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ABSTRACT

This technical memorandum discusses the performance of high
resolution methods used to process the data from vertical line arrays in a
realistic oceanic sound speed environment. Conventional and high resolu-
tion processors (Minimum Variance Distortionless Response (MVDR)
beanformer and MUltiple Signal Classification (MUSIC) Direction Of
Arrival (DOA) estimator) are described and their implementations are dis-
cussed as well. The general beamforming structure is decomposed in two
steps. After the estimation of the covariance matrix, a measure of the
match or mismatch between the measured field and a replica vector
characterizing a particular direction is computed. Using a signal frame-
work, the limitations of the high resolution methods under correlated
arrivals then are discussed. Preprocessing methods which limit the almost
complete degradation of their performance are considered. These spatial
smoothing methods are given several interpretations and their perfor-
mance characterized. The importance of wavefront curvature is assessed
and the influence of curvature on the beamformers is described. The spa-
tial smoothing methods are applied in a curved wavefront environment
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I Introduction

This technical memorandum discusses the performance of high resolution

methods used to process the data from vertical line arrays in a realistic oceanic sound

speed environment.

Chapter II introduces the array processing structures commonly used to beam-

form line arrays. After an outline of the frequency wavenumber representation and its

associated hypothesis, the conventional beamformer is derived. A signal model that

relates the covariance matrix to the power and the directions of the arrivals is introduced,

and the beamnforming process is decomposed into two steps. First, the covariance matrix

is estimated and a measure, based on the covariance matrix, is computed to yield the

amount of match or mismatch between the field and a replica vector that characterizes a

particular arrival angle. High resolution methods are introduced and a well-known adap-

tive beamforming technique, the MVDR processor, is described. Some performance and

implementation issues are addressed. Finally, superresolution methods are introduced

and the MUSIC eigenvector method is presented.

High resolution beamformers are well known to fail under correlated arrivals. In

Chapter III, the difference in the structure of the array covariance matrix between a

scenario with correlated arrivals and a scenario with only uncorrelated arrivals is

presented. The observation of the non-Toeplitz character of the covariance matrix for

correlated arrivals leads to the spatial smoothing techniques used to decorrelate corre-

lated arrivals. These preprocessing techniques are described and the reasons how and

why they perform are discussed. Then, using simulations as well as analytical deriva-

tions, the performance of modified spatial smoothing is compared to the performance of

the original spatial smoothing.
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The effects of wavefront curvature are studied in Chapter IV in the context of

vertical arrays using a geometric ray theory approach. Based on Snell's law, a way to

generate curved wavefronts is derived analytically. The importance of wavefront curva-

ture is first evaluated by comparing the phase between curved wavefronts and plane

wavefronts, both corresponding to the same arrival angles for a realistic scenario. The

behaviour of the conventional, MVDR, and MUSIC beamformers using plane wavefront

replica vectors then is studied in a curved wavefront environment. The largest mismatch

loss occurs for near horizontal arrivals and the aperture length is not critical for this

rather general result. Curved wavefront beamforming then is proposed and the behaviour

of the processors is described in terms of bearing responses and beam patterns. The dis-

tortion caused by the smoothing transformation is studied in the context of high resolu-

tion methods. An approach using the eigenvectors of the smoothed covariance matrix for

each replica vector allows the loss due to mismatch to be avoided. Finally, the perfor-

mance of the MVDR beamformer after spatial smoothing under correlated and curved

arrivals is discussed.
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II Array Signal Processing

This chapter introduces the array processing structures commonly used to beam-

form line arrays. After an outline of the frequency wavenumber representation and its

associated hypothesis, the conventional beamformer is derived. A signal model that

relates the covariance matrix to the power and the directions of the arrivals is introduced

and the beamforming process is decomposed into two steps. First, the covariance matrix

is estimated and a measure based on the covariance matrix, is computed to yield the

amount of match or mismatch between the field and a replica vector that characterizes a

particular arrival angle. High resolution methods are introduced and a well-known adap-

tive beamforming technique, the MVDR processor, is described. Some performance and

implementation issues are addressed. Finally, superresolution methods are introduced

and the MUSIC eigenvector method is presented. These three processing schemes will be

used in the subsequent chapters.
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11.1 Basic Assumptions

Array processing methods decompose the pressure field into a directionality

representation by assuming homogeneous wavefields [Yen1977]. A homogeneous

wavefield is the superposition of uncorrelated elementary waves [Bohme1987]. This

mathematical formulation sets a clear analogy between time series spectral estimation

and array processing in its frequency-wavenumber representation of the random field

[Bohmel987, Capon1969]:

p ( t, -F4) f Sexp[ j (eo t + k-+-r) ] &z(co, k4) (21)

where p denotes the random field at time t and spatial position ', w the circular frequency

in rad/s and k the wavenumber vector. dZ is the spectral increment of the random spectral

measure Z(w, k) with covariance

COV[dZ(to,k)dZ(o',k)] = 4 8(o-to)8(k-k-)S(o2) aO)ak' (2.1.2)(2,r)4

where o and W are circular frequencies, k and P wavenumber vectors , S the frequency-

wavenumber spectrum of the random field p (t , ') and 8 the dirac delta function.

This representation is a generalization of the Cramer spectral representation for

stationary time series [Priestleyl981]. Its main assumption is that spectral increments dZ

at two distinct frequencies or at two distinct wavenumber vectors are uncorrelated. It

constitutes the foundation of any array processing method.

Thus, this representation is one where the receiving array measures signals

which result from the superposition of uncorrelated elementary waves. These elementary

waves generally are assumed planar. Such a homogeneous wavefield representation is

restrictive since it excludes correlated arrivals (e.g. multipaths).



5

H.2 Conventional Beamforming

11.2.1 Lagged Regression Approach

Conventional beamforming with a line array made of uniformely spaced sensors

is a simple illustration of the already mentioned analogy with classic time series spectral

estimation [Kay 1988]. The conventional beamformer is the simplest processing structure

since it implements a linear regression on the sensor outputs either in the time domain or

in the frequency domain [Shumwayl988].

The time domain implementation is known as delay-and-sum beamforming. A

beam is formed in the time domain by summing up the lagged (delayed) outputs of the

array sensors [Johnsonl982, De Fattal988]

M-1
(t,0) == E am x.(t -".) (2.2.1)

where t denotes time, x(t) is the output of the m"h sensor, M the number of sensors,

(am)m=o..m- the shading coefficients and (tm)m=O.U1 the delays associated with each sensor

corresponding to a particular look direction, 0. The time delays 't,. are determined by

making additional assumptions on the propagating signals. If one considers plane waves

impinging on a line array with equally spaced sensors, the delays ', are given by

" m d sin (2.2.2)

where d is the interelement spacing, c the sound velocity and 0 the look direction

[DeFattal988]. The delay-and-sum beamformer is summarized in Figure 11.1.

The frequency domain regression can be derived by taking the Fourier transform

of the output y (t)
M-I

Y(f,0)= Z ae - 'X1 " X.(f) (2.2.3)
m=0

where f is the carrier frequency, Y(f, 0) and X, (f) the Fourier transforms of y(t) and x(t)

respectively. In essence, Equation (2.2.3) is the narrow-band implementation of Equation



6

(2.2.1) at frequency f. Equation (2.2.3) can also be expressed as an inner product :

Y (f ,k)= AH X (2.2.4)

XTr= IMO~ XIV) ... XM -I V) (2.2.5)

AT T [a, f ae e ' f 
.... am._e 2V ' ] (2.2.6)

the superscript H denotes the Hermitian operation (complex conjugate transpose opera-

tion), and the superscript T denotes the transpose operation. Assuming plane waves, that

is using Equation (2.2.2) and letting

k =f d sin0 (2.2.7)
C

Equation (2.2.3) is in the form of a spatially windowed Discrete Fourier Transform

[Oppenheiml975]"

M-1

Y(f,k)= La. e- 2 km XMf) (2.2.8)
m.0

where k is a normalized wavenumber.

The frequency-wavenumber power spectral density is estimated by the periodogran

Ip (f,k)= 1 I Y(f'k) 12 (2.2.9)IM-l
I ai)

where M is the number of sensors. I, (f, k ) can be converted into a power spectral den-

sity parametrized by the arrival angle 0 by the nonlinear mapping given in Equation

(2.2.7) [De Fattal988]. The narrow-band conventional beamformer often is imple-

mented as a FFT beamformer [Williamsl968]. The FFT beamformer is summarized in

FIgure 11.2. Since it is well known that the periodogram gives an inconsistent estimate of

the power spectral density [Priestley 1981], additional incoherent averaging over succes-

sive time snapshots is typically performed. The estimate then becomes

I 1 K-Il 2
P (f,k)= 1 - Y.(ftk) i (2.2.10)

M(--:Ia 2 i:) Ki-o
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where Y (f k) is FFT beamformer output from from the i I time snapshot.

H.2.2 Formulation in Terms of the Covariance Matrix

When the window applied is the rectangular window, the a 's are taken equal to

unity and the spectral density can then be expressed in a simplified matrix form as :
1

Ip (f ,k)--(EX)(EHX)H (2.2.11)
M

= EHx XHE (2.2.12)
M

where E is the plane wave steering vector,

ETr= I1 ej' xk ... ej 2%k (M-11 (2.2.13)

and X XH is an estimate at the frequency f of the cross spectral density matrix based on

the data, or covariance matrix. With additional averaging over time snapshots, the con-

ventional beamformer, also called the Bartlett beamformer, is given by
1

PB(f, k) -- EH RE (2.2.14)
M

with

1 _-1R I Xi X/' (2.2.15)
Ki=O

where xi is the vector of Fourier coefficients corresponding to the time snapshot i. R is

an estimate of the array covariance matrix. When a weighting window is appplied, one

gets

PB(f,k)- EH W R WH E (2.2.16)
M

where the (M,M) diagonal matrix W is

WT taoal "" a-] (2.2.17)

--=0
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11.2.3 Matched Filter Interpretation

Expressed as a function of the array covariance matrix, the conventional or

Bartlett beamformer allows the decomposition of the processing structure into two com-

ponents: the processor itself and the set of steering vectors.

Using a given set of replica vectors, finding directions of arrival corresponds to

finding the angles of maximum power at the output of the processor. Therefore, the

beamforming operation can be interpreted as a spatial matched filtering operation. Con-

sidering Equation (2.2.12), the quantity to be maximized is

AH X XH A= IA" X1 2  (2.2.16)

where A is a direction vector given by Equation (2.2.6) corresponding to an arrival angle

0. A belongs to a set of steering vectors or replica vectors which often is called the array

manifold [Schmidtl981, Clarkel988]. The choice of an array manifold is equivalent to

the choice of a wavefront model. Such a choice is guided by the underlying assumptions

about the signal propagation and wavefront shape. Generally, the plane wave array man-

ifold is selected.

If a single signal impinges on the array at a given but unknown angle of arrival,

the measured array signal vector X given by Equation (2.2.5) will be an amplitude

weighted plane wavefront vector. From the Schwartz inequality the output of the beam-

former will be maximum if the replica vector A and the array signal vector X are colinear.

The bearnformer provides a measure of the mismatch between the observed field and a

replica vector or steering vector. A match implies a high output and indicates an arrival

direction [Cox1973].
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11.3 Covariance Matrix Representation

In the previous section, it was shown that the conventional processor operates on

the array covariance matrix. In general, any beamformer will operate on the array covari-

ance matrix since it contains information on directionality. Therefore, it is of interest to

discuss the covariance matrix representation.

If p narrowband signals at the carrier frequency f impinge on the array, the time

domain array signal vector at the input of the beamformer is given by [Coxl973, De

Graaf1985]

r(t) = B s(t) + n(t) (2.3.1)

where s(t) is the (p,1) signal vector, sometimes called the envelope vector [Cad-

zow1988], n(t) is the (M,1) vector of additive noise and B the matrix of stacked directions

with columns equal to

B=[A. A " Ap-] (2.3.2)

each (M ,1) column vector Aj corresponds to an arrival angle 0j. The equivalent narrow-

band frequency domain representation is, at the signal carrier frequency f,

r=Bs+n (2.3.3)

where s is the (p, 1) signal vector, n is the additive noise (M, 1) vector, and B the matrix of

stacked directions. The corresponding model covariance matrix R,,, = r rH is thus

R.nI = B S BH + Q (2.3.4)

where S is the (p,p) signal covariance matrix given by E(s s") and Q is the noise covari-

ance matrix given by E(n nH) with E denoting the expectation.

Under the assumption of a homogeneous wavefield, the signals are uncorrelated,

and one can show that the (p ,p) signal matrix S is of full rank p. Recalling that S = E (s sH)

with st = [so s1 ." sp-, uncorrelated arrivals means that the signal envelopes are such

that for i j,
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E(sl s,)=O (2.3.5)

where * denotes the complex conjugate operation. If s and s1 are correlated, then

E (si s,) * 0 (2.3.6)

Restricting the discussion to two arrivals, the signal covariance matrix is

[E(soso) E(sos*,)S=E(so* sl) E(s, s*1)] (2.3.7)

with E(sis*) = ao, the power of the i' signal, and for i *j, E(si s,) = Oi jPi,, where pi,, = P*

is the complex correlation given by

E (si s7)  (2.3.8)
PI* = E(Isi I)E(Is 12)(

Then, the signal covariance matrix S can be written [Reddy 1987]

S= 0 a, p (2.3.9)

For fully coherent arrivals I pI = 1, hence det S = a 2 ?(1 - I p12) = 0.

The standard model for the noise covariance Q is a sensor noise uncorrelated

from sensor to sensor [Nickell988, Schmidtl986]. Under this assumption, the noise

covariance matrix is Q = ca I, where e is the noise power and I the identity matrix. It fol-

lows that the (M, M) covariance matrix R.., is of full rank.

Furthermore, if one assumes the elementary waves of the field to be planar, the

covariance matrix R,.&,, which is Hermitian by construction (i.e. Rn,, = R ), also is

Toeplitz (constant along the diagonals).

R,,.1 = 0
2 A0 A0H + 1

2A, AIH + "'" + ap-1
2 A 1 AP_1H (2.3.10)

Since A-f 1•~ e ' ' s  -  ], ahotrpouti heach outer product in the sum given by Equation

(2.3.9) is Toeplitz :

e e - i 2V e -j bzu ... e - j 2... - D k
e i2rA e •- a  •2 •

1 ""

A, A = .. (2.3.11)

e 2 9
(m - 1

)h ei 2 M - 2 )4 "" 1
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so that R,., is both Toeplitz and Hermitian. The Toeplitz character of the array covari-

ance matrix is a result of the duality between homogeneous plane wavefields and wide

sense stationary time series.

11.4 Adaptive Beamforming

11.4.1 Derivation of the MVDR beamformer

The narrow-band beamforming problem can be viewed as finding a set of com-

plex weights or, equivalently, a steering vector given by Equation (2.2.6) [De Graaf1985]

corresponding to the signal direction of arrival. The plane wave assumption only

corresponds to a particular signal model. The conventional technique is the most widely

used, the best known and the most robust, but it has the least resolution. In an effort to

improve the resolution, data adaptive techniques can be used. The increase in resolution

results from the full use of the information summarized in the covariance matrix, along

with specific assumptions about the signal model

An adaptive beamformer determines a data dependent set of weights as the solu-

tion of a constrained optimization problem [Griffithsl977, Monzingol985, Van

Veenl988]. Thus, it is referred to as an optimum beamformer in the literature [Coxl973,

Reddy1987].

The classical optimization criterion is to minimize the output power or variance

under the constraint of passing the look direction signal undistorted [Coxl973,

Kanasewich1975, Marple1987, Lacossl971] :

MIN [WH R W]AwI (2.4.1)

where W is the unknown weight vector, A the look of direction vector or replica vector

from the array manifold, as in Equation (2.2.6), and R the cross-spectral density matrix



14

estimated from the data given by Equation (2.2.5). As before, one asssumes that the data

have been Fourier analysed and one considers a single frequency f. Using the

Lagrange's multiplier method [Lacossl971, Kanasewitch1975, Marplel987], the weight

vector W is given by

w R1A (2.4.2)
AH R-1 A

and the wavenumber spectrum is

PMVDR (, k) = (2.4.3)

where M is the number of sensors. This is the so-called Maximum Likelihood method of

Capon [Caponl969], which is the maximum likelihood estimator in the case of Gaussian

noise (i.e. it minimizes the log-likelihood under the assumption of Gaussian statistics).

This beamformer also is called the Minimum Energy [De Graaf1985] or Minimum Vari-

ance Distortionless Response (MVDR) beamformer [Zoltowskil988]. The MVDR

beamformer stands as a high resolution method compared to the conventional beamform-

ing. For this reason, it is used in various areas such as the seismic field [Caponl969, Bag-

geroerl974, Baggeroer1982, Hsul9861, the oceanographic field [Oltman-shayl984] as

well as the underwater acoustics arena [Owsleyl985].

11.4.2 Performance of the MVDR Beamformer

The performance of the MVDR beamformer has been studied rather extensively

[Cox1973, De Graafl985]. The main results are presented here-succinly. In the context

of matched filtering, the MVDR processor is such that a slight mismatch in the replica

vector results in serious signal reduction at its output [Cox1973]. For the adaptive array

pointing in a given direction, the signal arriving in another bearing is an interference to

be cancelled. The stronger the interference, the more suppression the designed filter is

able to put on it. This suppression is based on the covariance structure across the array
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that samples the field. Depending on the signal-to-noise ratio SNR, the resolution varies.

For a line array and two signals 30 dB above the noise level, the resolution of the MVDR

beamformer [Cox1973] is slightly over three times the Rayleigh resolution of conven-

tional processing [Burdic1984] which is given in radians by

0 L(2.4.4)

L

where X is the acoustic wavelength and L is the length of the array. When SNR - 0, the

resolution of the MVDR processor decreases and becomes comparable to the conven-

tional processor one [Cox1973, Kanasewichl975, Zoltowskil988]. This improved reso-

lution results in a higher sensitivity to mismatch. Some cost may thus be associated to

this higher sensitivity to mismatch in terms of signal to noise ratio improvement or pro-

cessing gain. If the array manifold is chosen with improper assumptions about the true

underlying wavefronts, the resolving capability of the MVDR beamformer can be less

than that of the conventional processor [Seglison1970, McDonough1972].

11.4.3 Implementation Issues

The MVDR beamformer is implemented by

(1) performing the Fourier analysis at the output of each sensor using conventional

FFT based techniques on time subsegments

(2) computing the cross-spectral matrix based on the data, using Equation (2.2.5)

(3) inverting the cross-spectral matrix

(4) computing the angular wavenumber spectrum given by Equation (2.4.3).

It is assumed that the signals are superimposed on an incoherent noise. A nonne-

gative definite cross-spectral matrix is ensured theoretically by averaging at least M dyad

products x, X1!, each dyad product corresponds to a dimension. Averaging K cross-

spectral matrices as in Equation (2.2.15), corresponds to averaging across K time seg-
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ments, each Xi results from a time subsegment. Even when K - M, the matrix inversion

requires special attention, that is double precision arithmetic and an additional check for

matrix ill-conditioning. A cross-spectral matrix based on the data often is numerically

noninvertible ; this situation is characterized by the ratio of its smallest to its largest

eigenvalue with a practical criterion being a ratio below 10-. The solution [Capon1969]

then is to add a small amount of incoherent noise to the cross-spectral matrix R, that is to

add to the main diagonal of R :

= 'R) (2.4.5)

where tr denotes the trace operation, and 'y the fraction of noise, and tr() represents the
M

mean power across the sensor array. Typical values for Y are in the range of 10-4 to 10-2.

Taking -,= 10- corresponds to introducing an uncorrelated sensor noise 40 dB below the

average sensor power level.

This stabilization procedure is equivalent to increasing the incoherent sensor

noise and thus produces a small bias in the power spectral density estimate, in addition to

the one due to the data sequence length limitation which is given by [Capon 1970]

bias(dB) = 10 log K-M+ (2.4.6)

The asymptotic distributions (i.e. for very long data sequences) of the MVDR spectrum,

PmvDR (f, k), is a Wishart distribution, or a multidimensional chi-square [Capon 1970] with

a number of degrees of freedom given by

d.o.f. = 2(K-M+1) (2.4.7)
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1.5 Eigenvector Beamforming

The direction of arrival estimation problem can be solved using spectral estima-

tion techniques. However, sufficient angular resolution may not be achieved with con-

ventional or adaptive techniques. Direction of arrival or frequency estimators have been

developed to yield maximum resolution based on the covariance matrix eigenstructure.

These alternative methods provide super resolution but not an estimation of the power

spectral density.

The eigenvector beamformer has the same assumptions as the adaptive beam-

former, the covariance matrix is the superposition of a signal covariance matrix and a

noise covariance matrix, as in Equation (2.3.4). There are p signals impinging on the

array and the noise is a sensor noise uncorrelated from sensor to sensor. The p largest

eigenvalues of the covariance matrix allow the separation of the p signals from the noise,

the corresponding eigenvectors span the signal subspace. The other M -p eigenvectors

corresponding to the lowest eigenvalues span the noise subspace which is orthogonal to

the signal subspace [Schmidtl981]. This geometrical formulation leads to two classes of

estimators, one based on the signal subspace and the other based on the noise subspace

[Kay1988, Marple1987].

The MUSIC (MUltiple Signal Classification) algorithm [Clarkel988, Can-

tonil980] is a principal candidate among the various spectral eigenvector estimators, and

is widely referenced in the literature. MUSIC is a noise subspace estimator where the

orthogonality of the noise and signal subspaces plays a major role. This estimator is

given by

"MUIC(2.5.1)

= AH RN A

where A is the steering vector as in Equation (2.1.5) and RN the noise only covariance

matrix, given by
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M-P-1

RN= I VkVk (2.5.2)
k=O

where Vk is the kd" noise eigenvector of the data covariance matrix given by Equation

(2.2.15). V. is such that VHV, = 1.

MUSIC is implemented by

(1) the eigenvalue and eigenvector decomposition of the covariance matrix

(2) the selection of the number of signals p

(3) the computation of the noise only covariance matrix given by Equation (2.5.2)

(4) the computation of the MUSIC spectrum given by Equation (2.5.1) using the

plane wave array manifold

The MUSIC spectrum is the inverse of the squared distance of the projection of

A on the noise subspace. When scanning all the possible replica vectors of the array man-

ifold, global minima occur if this distance is zero, or equivalently, when A belongs to the

signal subspace. Then, the MUSIC spectrum theoretically will show a peak to infinity. In

practice, the peaks are finite because one has only an estimate of the covariance matrix.

The noise only covariance matrix RN is of rank M -p, thus rank deficient. The

quadratic form AH RNA in Equation (2.5.1) is p~ositive semi-definite. The noise covariance

matrix has M -p eigenvalues equal or close to unity, and p eigenvalues close to zero. To

avoid numerical problems when computing the quadratic form in Equation (2.5.1), (i.e.,

small negative values), a small fraction of noise can be added to the main diagonal of RN,

typical fractions of noise are between I0- and 10-. A fraction of noise equal to le-

corresponds to clipping the direction of arrival peaks to approximately 70 dB.

The angular resolution enhancement of the eigenanalysis based methods

[KayI988, Marple1987] and more precisely of MUSIC [Schmidt86, Nickel1987] is

recognized widely. An explicit relationship between the MVDR beamformer and the

MUSIC algorithm is derived in [Nicke11988] where the MVDR bearnformer is shown to
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be a weighted projection on the noise subspace, like MUSIC, when the signal to noise

ratio goes to infinity. This explains the superior resolution of MUSIC with respect to the

MVDR beamformer.

One of the major tasks in practice is to determine the number of signals imping-

ing on the array [Schmidtl981, Wax1984]. Three methods can be used

(1) the number of signals is determined by observing the spread of the eigenvalues

of the covariance matrix and using a threshold level to seperate high/signals from

low/noise eigenvalues [Wax1984, Oswleyl988]

(2) the number of signals is determined using hypothesis testing on the multiplicity

of the smallest eigenvalues [Schmidtl980, Wax 1984]

(3) information theoretic criteria of model selection allow the determination of the

number of signals without any subjective judgement as in (1) and (2) [Wax 1985]
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m. Processing Correlated Arrivals

High resolution beamformers are well known to fail under correlated arrivals

[White1979, Cantoni1980]. Here, the difference in the structure of the array covariance

matrix between a scenario with correlated arrivals and a scenario with only uncorrelated

arrivals is presented. The observation of the non-Toeplitz character of the covariance

matrix for correlated arrivals leads to the smoothing techniques [Shan1985, Willi-

ams1988] used to decorrelate correlated arrivals. These preprocessing techniques are

described and the reasons how and why they perform are discussed. Then, the perfor-

rnance of modified spatial smoothing is compared to the performance of the original spa-

tial smoothing [Reddyl987], using simulations as well as analytical derivations.
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I11.1 Limitation of the High Resolution Methods

The analogy between time series analysis and spatial array processing leads to

the formulation of directionality in the framework of homogeneous wavefields.

Nevertheless, array processing is not identical to time series power spectral density esti-

mation. An oceanic environment is bounded at the surface and the bottom and these

boundaries are known to have a major impact on the pressure field [Yen 1977]. Multipath

propagation produces correlated arrivals at the receiving line array [Urick1983].

Techniques such as the adaptive and eigenvector methods are high resolution

and lack robustness as soon as the structure of the array covariance matrix significantly

departs from the assumed signal model. Under such conditions, they generally report

improper arrival directions or incorrect power levels.

The severe limitation of the performance of the MVDR beamformer under corre-

lated arrivals are well known [Whitel979, Cantonil980]. The adaptive filter uses the

non-look direction signals to minimize its output power and since the signals are corre-

lated with the look direction signals, the latter is suppressed. This process is the so-called

signal cancellation phenomena in adaptive antennas [Widrow19821. On an algorithmic

level, the adaptive technique fails because the model signal covariance is singular

[Gabriell980].

The MUSIC algorithm also does suffer from arrival intercorrelation

[Schmidtl9811. If there are two correlated arrivals on the array, the signal subspace is

degenerate of rank one: the direction of arrivals are associated to the same single

waveform corresponding to a single emitter [Gabriel1980].

From a practical standpoint, the high resolution MVDR and MUSIC methods are

unable to resolve correlated arrivals as indicated by the results in [Whitel979] and [Wil-

liamsl988]. This point is further illustrated by Figure 111.1 and 111.2.
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Figure M.I: MVDR beamforming on 3 plane wave arrivals at -400, -350 and -30".
Panel A: the arrivals are uncorrelated, Panel B: the arrivals at -. 5' and - 30 are fully
correlated (p = 1). The array has 32 sensors with 25 m spacing and operates at 20 Hz in
an isovelocity medium of sound speed 1498 m/s.
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Figure M.2: MUSIC beamforming on 3 plane wave arrivals at -40, -35°and -30.
Panel A: the arrivals are uncorrelated, Panel B: the arrivals at -350 and - 3Y are fully
correlated (p = 1). The array has 32 sensors with 25 m spacing and operates at 20 Hz in
an isovelocity medium of sound speed 1498 m/s.
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111.2 Structure of the Covariance Matrix Under Correlated Arrivals

It was shown earlier that full coherence among arrivals is equivalent to a rank

deficiency in the signal covariance matrix. This explains why the adaptive and eigenvec-

tor methods fail under correlated arrivals. Since the available data is the array covariance

matrix, the structure of the covariance matrix for an inhomogeneous field is now investi-

gated.

It was shown earlier that the array covariance matrix of a homogeneous field

using the plane wave array manifold is both Toeplitz and Hermitian. In a realistic

environment, arrivals such as multipaths are correlated so that the field is not homogene-

ous (i.e. not stationnary in space). Thus, although it is Hermitian by construction, the

covariance matrix of a line array is not Toeplitz with the plane wave array manifold

[Gabriel1980]. The model covariance matrix for two correlated arrivals can be expressed

as [Reddy1987]

rYO cr ali~ AO'V
R.& = [A0 All I l 2 PA +Cy2, (3.2.1)

where Ai .is the direction of the iI' arrival, a2 the power of the i' arrival, and p the com-

plex correlation between the two arrivals, IpI:5, and a2 the uncorrelated sensor noise

power. Using the plane wave array manifold, one has with a M element array

A ,e '2" ... eSXM-1X ]T (3.2.2)

where ki is the normalized wavenumber of the il arrival.

The upper diagonal terms are given by

R,,,(i j + 1) = a2 e-j r, I e-j, +

[p ejxik'k)l e - 2'2k+ [p" ej(ki(ki - ) e-2"~k  (3.2.3)

for i = 1, M-1. Inspecting these terms, one concludes that the matrix is not Toeplitz. The

last term due to correlation (p 0) is responsible for that character. Correlation can be
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thought of as introducing a modulation term in the diagonals of the array covariance

matrix.

The effects of correlation on the covariance matrix can be observed on Figure

111.3 and Figure III.4 by comparing the magnitude and phase of the upper diagonals of

the array covariance matrix for a field corresponding to two uncorrelated and two fully

correlated arrivals (p = 1). The order of the diagonals can be identified by their length.

The arrivals are unit power plane waves impinging on a 103 wavelength line array of 32
3

sensors, at - 100 and - 20" incidence angles. The interelement spacing is 25 m, the operat-

ing frequency is 20 Hz and the sound speed is 1498 m/s. The magnitude and phase in the

uncorrelated case of Figure I1.3 are constant on each diagonal, while they both

significantly vary in the correlated case on Figure III.4.

This observation of this non-Toeplitz character is important since it points out

the difference in nature between uncorrelated arrivals and correlated arrivals, and leads to

the processing methods designed to limit the negative effects of correlation.
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Figure M.3: Magnitude and phase of the upper diagonals of the 32 by 32 covariance
matrix. Diagonals are identified by looking at their length. Matrix index corresponds to
element index along the diagonal. The 32 sensor line array (25 m interelement spacing)
receives two uncorrelated arrivals at - 100 and - 20 incidence angles at 20 Hz. The sound
speed is 1498 m/s.
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Figure I1.4: Magnitude and phase of the upper diagonals of the 32 by 32 covariance
matrix. Diagonals are identified by looking at their length. Matrix index corresponds to
element index along the diagonal. The 32 sensor line array (25 m interelement spacing)
receives two correlated arrivals (p = 1) at - l0 and -20 incidence angles at 20 Hz. The
sound speed is 1498 m/s.
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1I.3 Processing Methods

The methods which limit the effects of spatial correlation operate on the covari-

ance matrix to make it "more Toeplitz" by performing some kind of averaging [Line-

barger1988]. The straight arithmetic and geometric averaging of the covariance matrix

diagonals, based on the concept of redudancy [Linebargerl988], have been proposed in

the literature [Naidul988, Hsul986]. However, forcing a Toeplitz structure does not sys-

tematically result in a non negative definite cross-spectral matrix and is considered not

viable [Linebargerl988]. The major averaging techniques proposed in the literature are

(1) Frequency averaging which is averaging covariance matrices at different fre-

quencies [Wangl985, Zhul9881. This method is relevant only to broadband

situations.

(2) Spatial Averaging or Spatial Smoothing, developed for narrowband problems

(and for a plane wavefront array manifold) [Gabriel1980, Shan1985, Su1986,

Reddy1987, Takaol987, Linebarger19881. This method is particularly relevant

to the problems discussed here.

II.4 Spatial Smoothing

111.4.1 Description and Interpretation

The concept of spatial smoothing comes form the idea that the relative phase

between two correlated arrivals changes in space [Gabriel1980, Widrowl982]. In prac-

tice, moving the array spatial position is out of question. Spatial smoothing implements

this idea by averaging covariance matrices estimated on subarrays extracted from the full

aperture and corresponding to slightly different spatial position. This averaging induces

a reduction of the terms due to correlation [Linebargerl988] because the phase variations

are eventually averaged to zero.

The technique uses the special geometry of line arrays with equi-spaced sensors
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[Linebargerl988] and computes the average of the covariance matrix estimated on subar-

rays, where each subarray shares all but one of its sensors with an adjacent subarray

[Shanl985]. If the full aperture array has M sensors, and the subarrays have s sensors,

this is equivalent to averaging M - s + 1 blocks of s by s element extracted from the full

array M by M covariance matrix along the main diagonal [Takaol987]. This procedure is

summarized in Figure 111.5. It can also be viewed as a low-pass filtering operation [Line-

bargerl988]. Furthermore averaging decreases the variance of the estimate of the cross-

spectral matrix.

Spatial smoothing is implemented as follows [Shanl985]. If X if the full aper-

ture (M, 1) array vector, and Xi the i ' (s, 1) subaperture signal vector

XiT = [x,) X1.tf) ... X, f)] (3.4.1)

the spatially smoothed covariance matrix is

M-s

1. , X X f (3.4.2)Rsohd-M -s + 1 -

111.4.2 Effects of Spatial Smoothing

It is shown in [Shan1985] that if p correlated signals impinge on the array, at

least p averages over subarrays of p elements must be performed in order to recover the

rank of the signal covariance matrix, that is to have det S * 0 (i.e. S is a p by p matrix of

rank p). This result is of great importance because it indicates the number of averages

necessary to allow the determination of the direction of arrivals with high resolution

methods such as the MVDR beamformer or the MUSIC algorithm. It leads to the rule of
M

thumb for spatial smoothing that a M sensor array is able to detect at most -- correlated

arrivals [Shanl985].

In addition to their direction of arrival, it often is of interest to estimate the

power of the arrivals. The rule of thumb described earlier is of little value with respect to
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this problem since a full rank matrix does not ensure total decorrelation of the arrivals,

that is a diagonal signal covariance matrix. Partial correlation among the arrivals leads to

partial signal cancellation for the adaptive beamformers.

The spatial smoothing decorrelation rate for two correlated arrivals is studied in

[Reddyl987]. It is shown that the model covariance matrix corresponding to the k"

subarray can be expressed as

Rk = B 0t- S (0'-')H BH +aOl (3.4.3)

where Rk is the subarray covariance matrix and corresponds to Xk Xe', B is the stacked

plane wave direction matrix (a s by d matrix, where d is the number of signals), S is the d

by d signal covariance matrix and -, the diagonal matrix given by

e- i 'ct 0 0 0
0 e - j 0 0
0 0 • -j ' 0

(3.4.4)

0 0 0 e

where represents the elementary time delay between two consecutive sensors for the il

arrival.

This formulation shows that the effects of spatial smoothing can be interpreted in

a useful way in terms of a modified signal covariance matrix, the smoothed covariance

matrix:

1; 0" S (0",- ) (3.4.5)
K k=1

where K is the number of averages, also called smoothing index. Restricting the discus-

sion to two correlated arrivals, [Reddy1987] indicates that perfect decorrelation is

achieved when the (1,2) term of S is equal to zero. This term is given by

S(1, 2) = (aFap KexP -j x-l (sino- sinel)J (3.4.6)K k l
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exp 2CKA (sin -sin0

S(1, 2) = Km 1- exp (3s..o7sin))K I - exp [ -L(sinOo-sinO, ](347

where p is complex correlation between the two arrivals of power a2, a? and physical

arrival angles O0 and 01, A is the array interelement spacing, X the acoustic wavelength.

The minimum value of the smoothing index necessary to completely decorrelate

the two arrivals is

K = (3.4.8)
A I sin O0 - sinO( I

The values of the smoothing index K are tabulated, for an array with half wavelength ele-

ment spacing, as a function of the angular pair separation 100- 011 and the position of the

pair referenced by 10 1 (with 1001 < 10 11) in Table II. 1. An arrival pair with 50 separation

arriving at 100 requires at least 12 averages to achieve total decorrelation or, equivalently,

allow the MVDR beamformer to yield the proper powers.

Equation (3.4.8) shows that the number of averages necessary to decorrelate two

close arrivals greatly depends on the pair angular spacing. Two closely spaced arrival

are very difficult to decorrelate [Reddy1987]. In practice, full decorrelation of the

arrivals may not be possible if the array has a limited number of sensors. The effective

aperture is reduced from M to s which results in lower resolution. Although decorrela-

tion is achieved at the cost of resolution and numerical processing burden, spatial

smoothing is necessary to use with high resolution bearnformers.
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Figure 111.5: Summary of spatial smoothing [Takao1987].
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HL4.3 Simulation Results

M.4.3.1 Effects on the Array Covariance Matrix

Spatial smoothing is a preprocessing technique that operates on the full array

covariance matrix to obtain a "more Toeplitz" matrix. This preprocessing controls the

performance of the high resolution techniques by its ability to decorrelate the arrivals.

To illustrate the process of decorrelation achieved by spatial smoothing, the

diagonals of the array covariance of a field composed of two correlated arrivals are

inspected under several smoothing scenarios. As in Section 111.2, the two unit power

plane wave arrivals impinging on the array have incidence angles of - 100 and - 200. The
1

array is 10 -1 wavelength long and has 32 sensors, 3. Five different subarray lengths

are selected: 28, 24, 20, 16, 14 so that the number of averages in the smoothing increases

from 5 to 19.

As the number of average increases or subarray length decreases, the covariance

matrix becomes more and more Toeplitz, as can be seen on Figures 11.6 to I.10. Using

Equation (3.4.8) with - = 3, 80 = - 10, and 01 = - 20, the number of averages necessary to
A

decorrelate the two arrivals is K 18 which corresponds to a subarray length of 15. One

checks that for subarray lengths equal to 14 and 16, the spatially smoothed matrix is

almost Toeplitz, with constant phase and contant magnitude on the upper diagonals.

HI.4.3.2 Effects on the Output of the MVDR Beamformer

Theoretical results [Shan 1985] provide the criteria for the detection of correlated

arrivals using spatial smoothing and high resolution processors. When a good estimate of

the power is required, adaptive beamforming must be used, such as the MVDR beam-

former. It thus is of interest to study the amount of loss due to correlation at the output of
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the MVDR beamformer after spatial smoothing. The simulation described hereafter com-

pletes the already known qualitative information about the general behaviour of the

angular spectrum estimate [Reddy1987] by providing, in a particular case, quantitative

information on the loss due to correlation.

As before, a 10! wavelength array with 32 sensors receives a pair of correlated

3

(p = 1) unit power plane wave arrivals in the set with incidence angles {00, 50, 100, 150,

200, 25° , 300, 350, 400 }. A background sensor noise of - 20 dB is also included. The possi-

ble angular spacings are multiple of 50 which is close to the Rayleigh resolution of the

array. For each pair of arrival combinations, spatial smoothing followed by the MVDR

beamforming is performed and the loss corresponding to the arrivals measured. The loss

is the difference in dB between the true power (in this case 0 dB) and the power of the

arrivals at the output of the beamformer.

Figure 111. 11 shows the influence of the arrival pair angular spacing on the loss

due to correlation. Panel A indicates that without any smoothing the MVDR beamformer

suffers almost complete signal cancellation. The other panels correspond to different

subsegment lengths from 30 to 14, the number of averages varying from 3 to 19. Each

panel indicates the amount of loss due to correlation that can be expected from a given

number of averages and a given pair angular seperation. Each angular seperation

corresponds to a number of combinaison of arrivals, e.g. there is a 10 seperation for the

following pairs: (00 , 100), (50 , 150), (100 , 200), (150 , 250), (200 , 300), (250 , 350), (300 ,400).

A small subarray with 14 sensors allows perfect decorrelation of arrivals as close as 100

and limits the correlation loss to a few dB for 50 spacing. A subarray of 24 elements does

a good job at decorrelating arrivals seperated by at least 100.

Figure 111. 12 shows the same results of loss due to correlation as a function of the

number of averages. For a given scenario, it allows one to study the impact of the number

of averages on the final angular spectrum and to select a subarray length for each case. It
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indicates that considerable smoothing must be performed when the two arrivals are close

together. A 50 seperation requires at least 16 averages for the MVDR beamformer to

yield a minimum amount of loss.

In the case of a 100 seperated pair, Figure 111.13 studies the impact under several

smoothing conditions of the pair location with respect to the broadside direction. The

effect of moving an arrival pair from broadside (00 , 100), toward endfire (300 ,400) is

small since the variations of loss are at most of the order of 2 dB, as the pair direction

arrives at steeper and steeper angles.
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Figure 11.6: Magnitude and phase of the upper diagonals of the 28 by 28 spatially
smoothed covariance matrix. Diagonals are identified by looking at their length. Matrix
index corresponds to element index along the diagonal.The 32 sensor line array (25 m
interelement spacing) receives two correlated arrivals (p = 1) at - 101 and - 200 incidence
angles at 20 Hz. The sound speed is 1498 n/s.
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Figure M.7: Magnitude and phase of the upper diagonals of the 24 by 24 spatially
smoothed covariance matrix. Diagonals are identified by looking at their length. Matrix
index corresponds to element index along the diagonal.The 32 sensor line array (25 m
interelement spacing) receives two correlated arrivals (p = 1) at - I0" and - 20r incidence
angles at 20 Hz. The sound speed is 1498 m/s.
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Figure MI.9: Magnitude and phase of the upper diagonals of the 16 by 16 spatially
smoothed covariance roatix. Diagonals are identified by looking at their length. Matrix
index corresponds to element index along the diagonal.The 32 sensor line array (25 m
interelement spacing) receives two correlated arrivals (p = 1) at - 10" and - 2(r incidence
angles at 20 Hz. The sound speed is 1498 m/s.
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Figure 11.lO: Magnitude and phase of the upper diagonals of the 14 by 14 spatially
smoothed covariance matrix. Diagonals are identified by looking at their length. Matrix
index corresponds to element index along the diagonal.The 32 sensor line array (25 m
interelement spacing) receives two correlated arrivals (p = 1) at - I0V and - 20, incidence
angles at 20 Hz. The sound speed is 1498 m/s.
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Figure MI. 11: Loss at the output of the MVDR beamformer after spatial smoothing for a
correlated arrival pair. The pair angular spacing varies from 50 to 40r . A given spacing
corresponds to several combinations of arrivals at {0, 5, 10" .... , 40( ). Panel A
corresponds to no smoothing, Panels B, C, D, E, F, G, H, 1, J correspond to smoothing
subsegment lengths (30, 28, 26, 24, 22, 20, 18, 16, 14).
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24,22,20,18,16,14).
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[11.5 Modified Spatial Smoothing

111.5.1 Description and Interpretation

A second version of spatial smoothing has been proposed [Williamsl988] and

uses an estimate of the covariance matrix which is the modified covariance matrix of the

combined forward/backward linear prediction algorithm for autoregressive spectral esti-

mation [Burg1967]. The modified covariance method is known to perform better in time

series autoregressive spectral estimation in producing less spurious peaks [Marple1987].

The modified covariance matrix also is used in the maximum entropy wavenumber pro-

cessing for linear arrays [Barnard19821 and in the Kumaresan-Tufts high resolution

method of direction of arrival estimation [Kumaresan19831.

Im modified spatial smoothing, the covariance matrix of the array data xf and of

the reversed data Xb is estimated. Defining

XT= [XO X1 "" x1 (3.5.1)

xb =[X x,1-1 x01 (3.5.2)

then, the modified covariance matrix is

12[ x/x}+ Xb Xi,] (3.5.3)

This is made possible by the special geometry of equispaced line arrays. As in the origi-

nal spatial smoothing, the modified spatial smoothing does the average of the modified

covariance matrices estimated on overlapping subarrays. Modified spatial smoothing can

be formulated as [Williamsl988]

M -z

Ro d -~ + 1 6 Xi x, + J (X, XaP J (3.5.4)

where * is the complex conjugate operation and J is the reflection matrix or reverse

matrix given by



46

O00...1ooo...o
J= (3.5.5)Ol.1....

LO~O...o

111.5.2 Performance of the Modified Spatial Smoothing

It is shown in [WiUiamsl988] that if p correlated arrivals impinge on the array, it

is sufficient to average - subarrays of p sensors to recover the rank of the signal covari-

ance matrix, that is to have det S # 0. This result holds under some specific constraints

detailed in [Williams 1988]. With modified spatial smoothing, a M sensor array is able to

detect at most ! correlated arrivals [Williamsl988]. This result is of great interest
3

because it indicates that the number of averages necessary to allow the determination of

the direction of arrivals with high resolution methods is half what the original spatial

smoothing requires and allows the so-called increase in efficient array aperture.

As with spatial smoothing, an estimate of the power for each arrival often is of

interest. Then, one can ask what decorrelation rate modified spatial smoothing achieves

compared to the original spatial smoothing.

The study outlined in Section 11.4.3 and detailed in [Reddy1987] is repeated

here for the modified spatial smoothing. One considers two correlated arrivals impinging

on a M sensor array referenced to its center as in [Takaol987]. The full aperture plane

wave steering vectors are given by

AT = exp(j -(k- M -)sini . (3.5.6)

The array covariance matrix can be seperated into a part that corresponds to the original

spatial smoothing and a part that corresponds to the modified spatial smoothing. The spa-

tially smoothed part of the signal covariance matrix is given by
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M-I

Z Dk ( D (3.5.7)
2(M-s+l) ,fi --

2

where

De= jUAe (3.5.8)
0 e

and S is given by Equation (3.3.8). The spatially smoothed array covariance matrix is

given by

R1 =B $, BH (3.5.9)

where B is the stacked direction matrix over a subarray. Carrying out the algebra,

itAK
sin- (sin O0- sinel)

Sl1 )=2(M-s+l) ica P 7A .(..0

sin--( sinO0-sin8 1 )

The second part of the array covariance matrix is given by

R2 =JR* J (3.5.11)

or

R2 =J B*,9S BT*J (3.5.12)

Since it is shown in [Williams 1988] that j B" = B, then R2= B S BH and the equivalent

modified part of the signal covariance matrix is given by S2 = S. Then the (1,2) term of S

is

A

S( 1 ,2)- ol 2 IpI sinit-K(sinO, -sin0 1)
9, cos (3.5.13)

sinn-(sin80 - sin01)

where * and IpI are given by the correlation between the two arrivals p= IpI ej#.

This result shows a peculiarity of the modified spatial smoothing: when 0, the

electrical phase between the two arrivals at the center of the array (the reference) is 2'

perfect decorrelation is achieved. The array covariance matrix is Toeplitz and there is no
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loss due to correlation at the output of the MVDR beamformer, even if s = M. When the

electrical phase is zero, the decorrelation rate is identical to that of spatial smoothing.

These results that strongly depend on the electrical phase 4 are similar to what was

observed in [Gabriell986] for adaptive antennas and in [Whitel979] for the minimum

entropy method operating on fully correlated arrivals in quadrature.

The chances of having two signals in quadrature at the center of the array are

slim. Thus, all one can state is that the modified spatial smoothing works as well or better

than the original spatial smoothing in decorrelating a pair of correlated arrivals.

If the reference is taken at another spatial position along the array, the depen-

dence of the modified spatial smoothing performance on the electrical phase 0 still exists.

The precise phase relationship between the two signals for which decorrelation is

achieved is not - and depends on the reference point, the interelement spacing, the
2

wavelength, and the arrival angles.

1-.5.3 Simulation Results

To illustrate the theoretical developments of the previous sections, the effects of

modified spatial smoothing with two signals with a varying electrical phase at the center

of a 32 element array now is studied. As before, the array is 10 -1 wavelength long and

receives unit power plane wave arrivals at - 50 and 00 incidence angle. The subarray

length is 32 so that only two covariance matrix averages are performed. The maximum

loss due to correlation for the two arrivals at the output of the MVDR beamformer is

plotted on Figure 111. 14. When the two signals are in quadrature, there is no loss since the

modified covariance matrix is Toeplitz. The loss due to correlation increases as the

electrical phase decreases, and the loss reduces to that given by the original spatial

smoothing, on the order of 50 dB. Then, the behaviour of the modified spatial smoothing

is identical to that of the original spatial smoothing.
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The angular spectra given by the MVDR beamformer for an electrical phase of 0

and -1 radians are plotted on Figure 111.15. Perfect resolution is achieved when the two
2

signals are in phase quadrature, while the method fails when the two signals are in phase.
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Figure M.14: Variations of the loss at the output of the MVDR beaxnformer after
modified spatial smoothing as a function of the electrical phase between two correlated
arrivals (I p I = 1) with - 5* and 0V incidence angles. Phase and arrival angles are relative
to the aperture center. The array has 32 sensors (25 m spacing) and operates at 20 Hz.
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Figure M.15: MVDR Angular Spectra using the full array modified covariance matrix of
two correlated arrivals with -50 and V incidence angles. In Panel A, the two arrivals are
in phase (p= 1) while in Panel B the two arrivals are in quadrature (p=expjn2) with
respect to the array center.
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11.6 Conclusions

This chapter illustrates the effects of correlation on high and super resolution

techniques and explains how the spatial smoothing preprocessing techniques work. The

smoothing techniques attempt to reduce the modulations of the diagonals of the covari-

ance matrix which should be Toeplitz according to the signal model. The various

interpretations of smoothing were summarized and their performances outlined.

Guidelines were given to use smoothing with the MUSIC algorithm and the

MVDR beamformer. Spatial smoothing requires d averages of d sensor subarrays for the

MUSIC DOA estimator to detect d correlated signals, while the modified spatial smooth-
d

ing generally requires - averages. The different nature of the problem that the MVDR

beamformer attempts to solve was pointed out. In addition to the direction of arrivals, it

estimates the power. Signal cancellation occurs as soon as there is some correlation

between arrivals. The difficulty of decorrelating two closely spaced arrivals clearly

appears in the simulations presented. Some substantial loss due to correlation may still

occur even after heavy spatial smoothing.

Differences between the original spatial smoothing and the modified spatial

smoothing were outlined. As observed in the simulations, the variations of the decorrela-

tion rate achieved by modified spatial smoothing as a function of the electrical phase

between two correlated arrivals, was explained analytically.

Smoothing reduces the effective aperture of the array, and therefore the resolu-

tion. In addition, it increases in a significant way the computational burden. Nevertheless,

it is a necessary preprocessing step before using the high or super resolution techniques.
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IV Processing Curved Wavefronts

The effects of wavefront curvature are studied in the context of vertical arrays

using a geometric ray theory approach. Based on Snell's law, a way to generate curved

wavefront is derived analytically. The importance of wavefront curvature first is

evaluated by comparing the phase between curved wavefronts and plane wavefronts,

both corresponding to the same arrival angles for a realistic scenario. The behaviour of

the conventional, MVDR, and MUSIC beamformers using plane wavefront replica vec-

tors then is studied in a curved wavefront environment. The largest mismatch loss occurs

for near horizontal arrivals and the aperture length is not critical for this rather general

result. Curved wavefront beamforming then is proposed and the behaviour of the proces-

sors is described in terms of bearing responses and beam patterns. The distortion caused

by the smoothing transformation is studied in the context of high resolution methods. A

method using the eigenvectors of the smoothed covariance matrix for each replica vector

allows the loss due to mismatch to be avoided. Finally, the performance of the MVDR

beamrformer after spatial smoothing under correlated and curved arrivals is discussed.
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IV.A Introduction

The previous chapter began a realistic description of the oceanic environment.

The importance of the ocean surface and bottom was noted and the effects of multipath

propagation on the high resolution beamforming methods were studied.

Another important aspect of the underwater medium is its highly refractive char-

acter which is variable in the vertical as well as the horizontal. Propagation over long

range is controlled by the sound velocity profile and its variations in range [Mur-

phy1987]. The vertical directionality of the wavefield is a natural way to study the com-

plex propagation mechanisms due to the environment, and vertical line arrays are major

experimental tools used to measure ambient noise as well as long range propagation sig-

nals. At first with lengths of only a few hundred meters [Andersonl974, Andersonl979,

Kewley1984, Dossol987, Sen1988], array apertures have been increased in recent years

to provide a better coverage of the water column and enable work at lower frequency

[Sotirin1988]. In this framework, it is of interest to study the wavefront curvature due to

refraction.

In ray theory, the variation of sound speed with depth causes ray bending and

can be summarized by the Snell's law [Brekhovskikhl982]:

__ = constantcos0 411

where c is the local sound speed and 0 the ray angle with respect to the horizontal. Ray

bending can be large. A ray with angle with respect to the horizontal of 100 at great depth

with sound velocity of 1500 m/s has an angle with respect to the horizontal of 13.80 shal-

lower in the water column where the sound velocity is 1480 m/s. This is depicted on Fig-

ure 111. 1

Since ray bending is large, wavefront curvature is likely to have a large impact

on the outputs of the beamforming structures. Processing a field with varying arrival

angle across the array aperture is similar to the case of processing nonstationary random
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processes in time series analysis. The selection of the plane wave array manifold that

corresponds to a medium with a constant sound velocity, may not be appropriate, espe-

cially for a very long vertical line array.

Although the effects of index of refraction variations may be negligible for the

conventional processor due to its lack of sensitivity or its robustness, there are some indi-

cations that they can be large for high resolution processors [Seglison1970, Mac-

Donoughl9711.

IV.2 Generating Curved Wavefronts

IV.2.1 Derivation of the Phase Relationships in the Vertical

In order to understand the impact of curved wavefronts on the processing struc-

tures described in the previous chapters, a model of the wavefront curvature needs to be

derived. The simple geometric approach of ray theory is selected. Since the sound velo-

city continuously varies with depth, the phase variations from a point Mo in space to a

point M, can be expressed by the integral relationship

M,

=Jk dF (4.2.1)
Me

where 0 is the phase of the propagating wavefront, k the wavenumber vector varying

over space, and position in the two dimensional space sampled by the vertical array is

defined by the coordinate system (r, z), with r= r e,+ z e. (, spans the space as

defined by Figure IV.2. k can be expressed as

k (r, z 21f cosO(r, z) e + sinO(r, z) e'l (4.2.2)

c(r,z) I

where (r, z) are the coordinates of the point in space where the observation is made, f is

the acoustic frequency, c(r , z) the sound velocity at the point (r , z) and O(r , z) the ray

angle with respect to the horizontal at (r , z).
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The receiving array has its sensors numbered from top to bottom and negative

angles of arrival corresponds to downgoing sound or uplooking beams.

In the context of vertical line arrays, one is interested in the phase variations due

to the sound speed variations in the vertical so that

dF4= dz e- (4.2.3)

and, assuming a stratified ocean (range independant), Equation (4.2.1) becomes

0 =2 ff sin(z) . (4.2.4)
,, c(z)

Using the Snell's law, one gets

*= 2itf ~ Sgn (O(z)) 1_cos2(z)[ dz (4.2.5)

where Sgn is the signum function, and cos2e(z 0) C(Z<) 1 is implicitely assumed for all

z. If the medium is isovelocity, i.e. for all z c(z)= c(zo), Equation (4.2.5) reduces to the

plane wavefront result :

2 sinO(zo) -Z) (4.2.6)
C (Zo)

Equation (4.2.5) provides the variation of phase in the vertical and is identical to

a ray representation of the field. Following [Ahluwalia1977], the pressure field from ray

theory is given by

p(r , z) = exp(jk 0S (r , z)).(jk 0 ) A. (r , z) (4.2.7)
M-0

The summation term corresponds to the amplitude and k, S (r , z) gives the phase varia-

tions in space. ko is the reference wavenumber and S(r , z) often is being called the

eikonal [Brekhovskikhl982]. The amplitude and the eikonal are solutions of the

Helmholtz equation. For horizontally stratified ocean, the S(r ,z) can be expressed as

[Ahluwalial977, pp 82-83]
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z (: z,.

S(r ,z)=a r + f [n2-a2J dz (4.2.8)

S(r ,z)=a r + f. n2-a 2dZ (4.2.9)
2 (<3),

where z0 is the reference depth taken at the sound axis. n is the refraction index given by

n= c (z) < 1, and a is a constant equal to n(zo) sina where a is the take-off angle in spher-

ical polar coordinate (that is a = 1-0). Then Equation (4.2.9) is equivalent to Equation
2

(4.2.5).

LV.2.2 Partial Insonification

The ability to generate a curved wavefront array manifold will allow us first to

simulate a realistic field consisting of curved wavefronts, and second will constitute a set

of replica vectors for use with the high resolution structures.

The final estimate of the angular spectrum greatly depends on the selected refer-

ence point, that is the depth to which the angular spectrum corresponds. In the following,

the reference is chosen at the center of the array aperture. The results of Section IV.2.1

are used to compute the phase entering into the steering vectors stacked in the array man-

ifold matrix. The array manifold matrix has complex columns that correspond to physical

angles from -900 to 900 and lines that correspond to the different sensors of the array.

The sensors are numbered from top to bottom. The il sensor or the ill line in the matrix

is associated with a sound velocity c8. If c, > co, where co is the reference sound velocity

(sound velocity at the center of the array), a ray with angle Oo with respect to the horizon-

tal at the center may not propagate to the sensor depending on 00. The condition for phy-

sical existence of a ray at the ill sensor is

CO
00 > cos 1 o (4.2.10)

ci
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If Equation (4.2.10) is not verified, the ray has turned over, and the steering vector com-

plex exponential is replaced by zero. Beyond the turning point, there is a shadow zone

where the solution of the wave equation, under the WKB approximation, is exponentially

decaying [Boylesl984, p 210]. Here, the model adopted assumes that there is no

insonification past the turning point. Figure IV.3 shows the array manifold stacked steer-

ing matrix for a particular sound velocity profile with respect to a receiving line array.

IV.2.3 Phase Difference between Curved and Plane Wavefronts

The relative importance of wavefront curvature needs to be assessed. This can

be done by comparing the phase of a curved wavefront to that of a plane wavefront, with

the reference at the center of the array in both cases.

A simulation is performed on a 64 element array with 25 m spacing in the water

column with a sound velocity of 1481 m/s at the top of the array. The sound velocity

linearly increases across the array to 1515 m/s at the bottom of the array. The frequency

is 20 Hz. The phase of the plane wavefronts is computed using Equation (4.2.6) with the

sound velocity at the center of the array, 1498 m/s, as reference sound speed.

The differences of phase for each sensor position when insonified by arrival

angles between -900 and 900 are overlaid on Figure IV.4. The phase change across the

entire array for the endfire arrival is on the order of 66 radians. One therefore notes that

the difference of phase varies as much as 10 % of this maximum phase. Figure IV.4 also

indicates that only a few steering vectors yield a large phase difference between the

curved and plane cases. The low angles actually are the only ones subject to these large

deviations, and this effect still exists when the array aperture is reduced. A 16 sensor

aperture from sensor number 24 to 40 will experience relatively important phase varia-

tions at low angles.
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Figure IV. 1: Effects of refraction on ray propagation. Panel A: sound velocity profile,
Panel B: ray bending, Panel C: Variations of the arrival angle in the vertical and wave-
front curvature.
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Figure IV.4: Overlaid plots of the phase difference between curved and plane wavefronts
corresponding to angles with respect to the horizontal between - 90 and 900. The line
array has 64 sensors (25 m interelement spacing) in a constant gradient sound velocity.
The reference sound velocity at the center of the aperture is 1498 m/s.
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IV.3 Plane Wave Beamformers in a Curved Wavefront Environment

IV.3.1 Performance of the Plane Wave Beamformers

The response of the beamformers to a curved wavefront field is of interest in

order to assess the effects of the curvature on their performance.

The same 64 element array as in Section IV.2.4 is used in this simulation. The

array operates at 20 Hz, and has a 25 m interelement spacing. The sound velocity has a

constant gradient increasing from 1481 m/s at the top of the array to 1515 m/s at the bot-

tom. The data at the input of the plane wave beamformer are curved wavefronts gen-

erated as discussed in the previous sections. A Kaiser-Bessel window with an a parame-

ter of 1.5 weights the data across the array in order to yield a 38 dB side lobe rejection.

Bearing responses for arrivals at -400, - 300, - 200, - 100, -50, -0.20, 0.20, 70, 100, 200 300,

400 are plotted on Figure IV.5. These should be compared to the bearing responses for

plane wavefront data which are plotted on Figure IV.6.

The bearing response of the conventional beamformer for curved data are similar

to the one for plane data in case of high angles of arrival. Differences clearly appear for

low angles of arrival since the peak indicating the curved arrival is smeared. The estimate

suffers some loss for arrival angles between - 100 and 100, and some large angle bias for

near horizontal arrivals (e.g. the 0.20 arrival yields a peak at 50 with a - 3 dB loss). Furth-

ermore the side lobe level is raised at least of 20 dB in the curved wavefront case with

respect to the plane wave case.

As indicated in Chapter II, the MVDR beamformer has a high sensitivity to

mismatch compared to the conventional processor [Seglisonl970, McDonoughl971].

The plane wave MVDR bearing responses are plotted on Figure IV.7 for curved data and

on Figure IV.8 for plane data. With curved wavefront data, one notes that the MVDR

processor suffers a considerable loss due to mismatch. In addition, the bearing response
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for arrival angles between - 100 and 100 are smeared and biased in angle.

The bearing response results of the MUSIC algorithm are similar to those of the

MVDR beamformer results as shown in Figure IV.9 (plane plane wave MUSIC process-

ing curved wavefront data) and Figure IV.10 (plane wave MUSIC processing plane

wavefront data).

In this particular case, one can conclude that the conventional beamformer some-

what suffers from an imperfect wavefront modeling. The deleterious effects occur where

the curvature is the largest, that is for low angle arrivals. The effects of imperfect wave-

front modeling are much larger for the MVDR and MUSIC algorithms. This loss due to

mismatch cannot be afforded and curved wavefront replica vectors should be used.

IV.3.2 Influence of Aperture Length

The array discussed in Section IV.3.1 is 1575 m long (or approximately 21

wavelengths at 20 Hz) and the question of the dependence of curvature effects on aper-

ture length can be raised. The same simulation is repeated for subarrays extracted from

the 64 sensor array. These subarrays have same center as the large aperture array. The

loss due to mismatch at the output of the conventional and the MVDR beamformers is

plotted on Figure IV. 11 for the different subarray lengths and for arrival angles between

- 400 and 400. The loss due to mismatch increases as the subarray length increases and as

the arrival becomes close to the horizontal. While the curvature has only a mild effect on

the output of the conventional processor, it has a strong effect on the MVDR results for

any subarray length at low angles. Figure IV. 11 clearly shows that curvature cannot be

neglected even for fairly small apertures in the case of a high resolution beamformer.
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Figure IV. 11: Loss due to mismatch for the conventional and NIVDR beamformers using
plane wave replica vectors under curved wavefront data for several array lengths (M is
the number of sensors). Panel A: conventional processor, Panel B: MVDR processor.
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TV.4 Curved Wavefront Beamforming

TV,4.1 Conventional Curved Wavefront Beamforming

In Chapter II, the beamforming operation was decomposed into two components,

a processing structure and an array manifold. The results of the previous section indicate

that the selection of the plane array manifold for an array in a curved wavefront environ-

ment is not appropriate, especially for high resolution methods and low angle of arrivals.

Curved wavefront steering vectors should be used as replica vectors [Murphy87].

The Bartlett beamformer generally is used with a tapering window in order to

provide good sidelobe rejection. The beampatterns of the untapered Bartlett beamformer

steered to - 400, - 300, - 200 , - 100 , - 50, - 0.20, 0.20, 70, 100, 200, 300, and 400 are plotted on

Figure IV. 11. The first sidelobes is around -15 dB, which is not acceptable. Windowing is

necessary but not as simple as in the plane wave case, due to partial insonification of the

array aperture. The window length has to be adjusted and applied to the insonified part of

the array manifold stacked steering matrix. In Figure IV.13 are plotted the beam patterns

when a Kaiser-Bessel window with an C parameter of 1.5 has been properly applied. The

sidelobe rejection is equivalent to the plane wave case except at low angles where there

is a large sidelobe around - 30 dB.

This high sidelobe indicates that the bearrformer, steered in the 400 direction,

still receives energy from the near horizontal attenuated by 30 dB. This can be also

observed in Figure IV.14 where bearing responses for the same angles are plotted. The

side lobe floor is raised when the arrival angle approaches the horizontal. This sidelobe is

due to the partial insonification of the aperture.
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IV.4.2 High Resolution Curved Wavefront Beamforming

IV.4.2.1 Effects of Curvature on the Array Covariance Matrix

To understand why the plane wave, high resolution beamformers do so poorly

under curved wavefront data, the effects of curvature on the array covariance matrix are

now investigated. Uncorrelated plane wavefront arrivals impinging on a line array with

equispaced sensors lead to a Toeplitz Hermitian covariance matrix. When the arrivals

have curved wavefronts, the corresponding phase variations from sensor to sensor are not

constant as they are for plane waves. If A is a model signal direction matrix expressed as

AT =[e*i e'ji ...e'  (4.5.1)

its contribution to the array model covariance matrix, A An, is a matrix with first upper

diagonal given by

[e e (4.5.2)

and because of curvature, one has for i j

Oi - Obi+1 * y -y (4.5.3)

so that A AH is not Toeplitz and the model covariance matrix is not as well.

Figure IV. 15 and Figure IV. 16 illustrate the non-Toeplitz character of the covari-

ance matrix in the case of a single arrival with a - 10" angle with respect to the horizon-

tal, and an uncorrelated arrival pair with - 20" and - 100 arrival angles. The scenario is

the same as before with a 32 element array extracted from the large 64 sensor array of

Section IV.2.4 and centered at the same depth. Curvature makes Figure IV.16 look

significantly different from Figure 111.3, its plane wave counterpart.
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Figure IV. 15: Upper diagonals of the 32 sensor array covariance matrix of a unit power
curved wavefront arrival with - 10 arrival angle. Matrix index corresponds to index on
the diagonal. Each diagonal can be identified by its length.
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Figure IV.16: Upper diagonals of the 32 sensor array covariance matrix of two unit
power uncorrelated curved wavefront arrivals with -200 and - 10" arrival angles. Each
diagonal can be identified by its length.
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IV.4.2.2 Curvature and Spatial Smoothing

Under correlated arrivals, the high resolution methods fail unless spatial or

modified spatial smoothing is performed. It was shown in Chapter III that these prepro-

cessing techniques specifically are designed for equispaced sensor arrays in a plane

wavefront field. They use the special underlying structure of the covariance matrix: a

Toeplitz structure.

In a curved wavefront environment, the direct application of these preprocessing

schemes creates a twofold problem. One is the distortion introduced by the smoothing

procedure, the underlying structure of the covariance is not Toeplitz and depends on the

arrivals which are unknown a priori. The other is related to the actual decorrelation rate

achieved by the smoothing procedure, thus directly influencing the performance of the

high resolution beamformers.

IV.4.2.3 Limiting the Distortion Effects due to Smoothing

The study of distortion created by smoothing the original covariance matrix is

based on the bearing response of the MVDR beamformer and the MUSIC processor for

arrival angles at { -40, -30 ° , -20-,-0T, - 5% -0.2, 0.20, 70, 100, 200, 30o, 40 ). The

simulation is done under the same conditions as Section IV.3.1 with a smaller aperture of

32 sen-'ors extracted from the large 64 sensor array with the same center.

After smoothing with a subarray length of s sensors, a natural choice for the set

of replica vectors is the curved wavefront array manifold that corresponds to a s sensor

array extracted from the large aperture with same center. The bearing responses of the

MVDR beamformer after spatial smoothing with subarray lengths of 24 and 16 respec-

tively, are plotted on Figure IV. 17 and Figure IV. 18. The bearing responses of the

MUSIC algorithm for smoothing subsegment length of 24 and 16 respectively, are plot-

ted on Figure IV.19 and Figure IV.20. One notes the loss due to mismatch for arrivals at

low angle.
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This loss is due to mismatch between the curved wavefront replica vector and

the equivalent array signal vector after spatial smoothing. It is the result of the distortion

due to smoothing. For each bearing characterized by a signal direction vector A and the

corresponding covariance matrix A AH, this mismatch loss can be minimized by choosing

the replica vector E that maximizes the power at the output of the conventional processor

E {T(A AH)} E (4.2.4)

where T denotes the transformation performed by smoothing on the covariance matrix.

The best replica vector is given by the eigenvector of T(A A") that has the largest eigen-

value. This replica vector will be referred to as the eigen steering vector. Because the dis-

tortion effects associated with the smoothing transformation are relatively small, the

smoothed matrix is of rank 1 for all practical purposes. An eigenvalue/eigenvector

decomposition of the smoothed version of the (32, 32) covariance matrix for both subar-

ray lengths was performed for 256 steering vectors spanning the grazing angles from

- 900 to 900. The eigenvalues are overlaid on Figure IV.21 for the subsegment lengths of

24 and 16 respectively. There is a single large eigenvalue of value one, the others

decrease to the normalized fraction of noise used to stabilized the matrix.

Figure IV.22 and Figure IV.23 give the bearing responses for the MVDR beam-

former after spatial smoothing with subsegment length of 24 and 16 using the eigen

steering vectors. Figure IV.24 and Figure IV.25 give the bearing responses for the

MUSIC algorithm after spatial smoothing with subsegment lengths equal to 24 and 16,

using the eigen steering vectors. Loss due to mismatch is reduced to negligible values.

Nevertheless, the use of the eigen steering vector cannot reduce the - 25 dB side lobe

level at near horizontal angle in the case of the MVDR beamformer after smoothing with

a subsegment length of 16.
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Figure IV.2 1: Overlaid cigenvalues of the spatially smoothed covariance matrix for all
256 curved wavefront steering vectors corresponding to arrval angles between - 900 and
9(r. Panel A correponds to a subarray length of 24, while Panel B to a length of 16.
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IV.4.2.4 Performance of the MVDR Beamformer after Smoothing

In a plane wave environment, Chapter III showed that the performance of the

MVDR bearnformer after modified spatial smoothing is similar to the performance after

spatial smoothing. The use of the modified covariance matrix in a curved ',;avefront

environment is not easily justifiable since the symetry present in the plane wavefront

problem is lost in a curved wavefront environment. Therefore, this study of performance

will be only concerned with spatial smoothing.

In this simulation, the same 32 element array receives a pair of unit power fully

correlated (p = 1) curved wavefront arrivals with arrival angles in the set { 00, 50, 100, 150,

200, 250, 300, 350, 400 ). A background sensor noise of - 20 dB is also included. Spatial

smoothing followed by the MVDR beamformer is performed using the eigen steering

vectors that correspond to a particular smoothing scenario. The loss suffered by the

arrivals is measured by taking the difference of the true underlying power (0 dB) and the

power reported by the MVDR beamformer. The results summarized in Figure IV.26 and

Figure IV.27. Figure IV.26 shows the influence of the arrival pair angular spacing on the

loss due to coherence. Each angular separation corresponds to a number of combinations

of arrivals (e.g. the 50 pair spacing corresponds to the pairs (00 ,50), (50 , 100), ...). Figure

IV.27 gives the same results in term of number of averages. This simulation correponds

to the plane wave results summarized in Figure III. 11 and Figure 111. 12 of Chapter III.

Panel A of Figure IV.26 indicates that without smoothing the MVDR suffers

almost total signal cancellation as in the plane wave case. The other panels correspond

to different subsegment lengths from 30 to 14 (the number of averages varies from 3 to

19). The beamformer fails to resolve the arrival pair (0", 50) for any subsegment length.

When one of the arrivals is near horizontal, the power estimate suffers greater loss than

for a pair with same angular separation but with higher arrival angle (Figure IV.27). A

near horizontal arrival has the most curvature and partially insonifies the array (because
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the sound velocity increases with the sensors, only the upper half of the array is

insonified). One can note that with the exception of this case, the results are very similar

to those for plane waves.
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Figure IV.26: Loss at the output of the MVDR beamformer after spatial smoothing for a
correlated pair with angular separation varying between 50 and 40. The data are curved
and the replica vectors are the eigensteering vectors. Panel A corresponds to no smooth-
ing and Panels B, C, D, E, F, G, H, I, J correspond to smoothing subsegment lengths (30,
28,26, 24, 22, 20, 18, 16, 14).
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IV.5 Conclusions

The first part of this Chapter was devoted to deriving an expression for curved

wavefront steering vectors. The simple geometric approach of ray theory provides a con-

venient way to generate a curved wavefront array manifold. The implemented integral

equation of phase reflects the variation of sound speed with depth.

The importance of wavefront curvature has been assessed. It was shown that cur-

vature is large for near horizontal arrivals, even for a relatively short aperture. On the

other hand, arrivals with steep angles with respect to the horizontal are quite similar to

plane wave arrivals. This result is observed on the bearing responses of the various

beamformers using the plane wave array manifold with good results for steep angles with

respect to the horizontal and poor results at near horizontal arrival angles. One also

observes the great sensitivity to mismatch of the high and super resolution techniques

with losses as large as 40 dB when curved wavefronts arrivals impinge on the array. To

avoid loss due to mismatch, curved wavefront replica vectors should be used.

The direct application of spatial smoothing to decorrelate correlated curved

wavefront arrivals causes some slight distortion, still yielding a loss due to mismatch

even when using the curved wavefront array manifold. The loss due to mismatch can be

avoided by taking the replica vectors that correponds to the steering vectors after the spa-

tial smoothing transformation of the covariance matrix. By using these eigen steering

vectors, loss due to mismatch is made negligible. The performance of the MVDR beam-

former under correlated curved wavefront arrivals then was shown to be very similar to

the plane wave case (plane wave data and plane wave replica vectors), except for near

horizontal arrivals where performance degradation still occurs.
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